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Abstract

Graph Neural Networks (GNNs) have demonstrated remarkable performance across1

a spectrum of graph-related tasks, however concerns persist regarding their vul-2

nerability to adversarial perturbations. While prevailing defense strategies focus3

primarily on pre-processing techniques and adaptive message-passing schemes, this4

study delves into an under-explored dimension: the impact of weight initialization5

and associated hyper-parameters, such as training epochs, on a model’s robustness.6

We introduce a theoretical framework bridging the connection between initializa-7

tion strategies and a network’s resilience to adversarial perturbations. Our analysis8

reveals a direct relationship between initial weights, number of training epochs and9

the model’s vulnerability, offering new insights into adversarial robustness beyond10

conventional defense mechanisms. While our primary focus is on GNNs, we extend11

our theoretical framework, providing a general upper-bound applicable to Deep12

Neural Networks. Extensive experiments, spanning diverse models and real-world13

datasets subjected to various adversarial attacks, validate our findings. We illustrate14

that selecting appropriate initialization not only ensures performance on clean15

datasets but also enhances model robustness against adversarial perturbations, with16

observed gaps of up to 50% compared to alternative initialization approaches.17

1 Introduction18

Neural networks have demonstrated remarkable prowess across various domains, ranging from19

computer vision [7] to natural language processing [28], proving their ability to model and extract20

complex insights from real-world datasets. Recently, Graph Neural Networks (GNNs) [20, 35, 29]21

have emerged as a powerful extension of neural networks specifically tailored to tackle graph-22

structured data. These models have led to rapid progress in solving tasks such as node and graph23

classification where their application have spanned from drug design [19], protein resistance anal-24

ysis [23] to session-based recommendations [32]. Concurrently with their success, deep learning25

architectures have been shown to be unstable when subject to adversarial perturbations [14], resulting26

in unreliable predictions, consequently questioning these models’ applicability in critical domains.27

While most adversarial robustness studies focus on the domain of computer vision, recent work [15]28

studying the robustness of GNNs has emerged. Given their rich nature, graphs allow different attack29

schemes, where the attacker can either choose to edit the graph structure (by adding/deleting edges)30

or edit the node/edge features. In parallel, recent studies have been devoted to studying approaches to31

defend against these attacks and enhance GNN’s robustness, such as input pre-processing techniques32

[31], low-rank approximation [10], edge-pruning [37] or adapting the message-passing schemes [1].33
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The majority of available defense studies focus on understanding the inner dynamics of GNNs to34

pinpoint and mitigate adversarial vulnerabilities. While analyzing the message-passing mechanism35

and implementing input pre-processing techniques remains a viable direction, comprehensive under-36

standing necessitates exploration beyond traditional avenues. In this sense, investigating factors such37

as weight initialization strategies and the impact of other hyperparameters, notably those associated38

with optimization mechanisms, can offer new insights and perspectives on achieving GNN’s global39

robustness. Hyperparameter choices and tuning play a critical role in striking a balance between learn-40

ing the underlying signals in the data and preventing overfitting to ensure the model’s generalization.41

Hence, existing studies on initialization mainly evolves around understanding its effect on the model’s42

convergence, stability and performance [33, 22]. In contrast, the current work primarily focuses on43

examining the effect of initialization on a model’s underlying adversarial robustness, representing44

to the best of our knowledge the first exploration of its kind. Our main objective is to provide a45

theoretical understanding of the link between weight initialization and other dynamics such as the46

number of training steps and the resulting model’s robustness. With this perspective in mind, we start47

by formalizing robustness in the context of GNNs when subjected to structural and node feature-based48

adversarial attacks. Subsequently, we derive an upper bound that connects the model’s robustness to49

the weight initialization strategies. Specifically, we illustrate that this bound depends on the initial50

weight norms and the number of training epochs. Finally, we validate our theoretical findings by51

demonstrating the effects of employing various initialization strategies on the model’s robustness52

using benchmark adversarial attacks on real-world datasets. Note that while our analysis primarily53

focuses on the widely used Graph Convolutional Networks (GCNs) [20] and Graph Isomorphism54

Networks (GIN) [35], we highlight the versatility of our approach by providing a general upper bound55

applicable to any Deep Neural Networks in Section 5. This underlines the potential for extending our56

analysis to a wide range of architectures, showcasing its broad applicability in understanding and57

enhancing adversarial robustness in neural networks. We summarize our contributions as follows:58

• We provide a theoretical analysis that links weight initialization strategies with adversarial59

robustness in GNNs. We specifically derive an upper bound connecting a model’s robust-60

ness to weight initialization and the number of training epochs, demonstrating that the61

initialization strategy can significantly influence the network’s adversarial robustness.62

• We validate our theoretical findings by conducting extensive experiments across various63

models using different benchmark adversarial attacks on real-world datasets. These exper-64

iments demonstrate that certain weight initialization strategies can enhance the model’s65

defense against adversarial attacks, without degrading its performance on clean datasets.66

• While our primary focus is on GNNs, we extend our analysis to Deep Neural Networks,67

illustrating the broader applicability of our theoretical analysis and its corresponding insights.68

2 Related Work69

Graph Adversarial Attacks. Multiple studies focus on designing adversarial attacks capable of70

fooling a graph-based classifier [15, 34, 9]. The majority of these methods [41, 36] approach the71

adversarial aim as an optimization problem and employs different methods to solving it such as meta-72

learning [40]. Furthermore, Nettack [39] constrained the problem by preserving degree distribution73

and imposing constraints on feature co-occurrence to generate unnoticeable perturbations. Finally,74

reinforcement learning was proposed recently as a mean to generate graph adversarial attacks [6].75

Graph Adversarial Defenses. Recent efforts have emerged to defend against the aforementioned76

adversarial attacks. In particular, methods such as low-rank matrix approximation coupled with graph77

anomaly detection [21] have been used. For example, GNN-Jaccard [31] proposed to pre-process78

the graph’s adjacency matrix to detect potential manipulation of edges. Other methods such as edge79

pruning [37] and transfer learning [27] have been leveraged to limit the effect of poisoning attacks.80

Additionally, adaptations of the message-passing scheme, such as employing orthogonal weights81

[1] or introducing noise during training [8], have been shown to perform well in term of defense.82

Furthermore, there is a growing interest in exploring robustness certificates [41, 3] as a means of83

ensuring model robustness. For instance, [4] used randomized smoothing to provide a highly scalable84

model-agnostic certificate for graphs. Additionally, other robustness certificates for GCN-based graph85

classification under topological perturbations have been proposed [18].86
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Weight Initialization. The impact of weight initialization has been extensively studied both theoreti-87

cally and empirically where the main line of study consists of understanding the interplay between88

initialization techniques and the implicit regularization they induce, thereby elucidating their influence89

on a model’s generalization capabilities [33, 22]. For instance, it has been showcased that sampling90

initial weights from the orthogonal group can speed up convergence [17]. Similarly, alternative91

initialization approaches such as Glorot Initialization [12] and Kaiming Initialization [16] have been92

proposed in efforts to improve the model’s performance.93

Our work stands apart from existing research on adversarial robustness as it represents, to the best of94

our knowledge, the first attempt to theoretically investigate the impact of initialization on a model’s95

underlying robustness. Moreover, our approach diverges fundamentally from existing literature on96

weight initialization as our focus lies in theoretically understanding the effect of initialization on a97

model’s robustness rather than its implications for generalization or convergence.98

3 Graph Adversarial Robustness99

In this section, we start by introducing the notation and some fundamental concepts related to GNNs.100

We afterwards establish the problem setup together with the set of considered assumptions. We finally101

lay out a GNN’s robustness formalization on which we will build our theoretical analysis.102

3.1 Preliminaries103

Let G = (V,E) be a graph where V (|V | = n) is its set of vertices and E its set of edges. We104

denote A ∈ A ≜ {0, 1}n×n its adjacency matrix. The graph nodes are annotated with feature vectors105

X ∈ X ⊆ Rn×d (the i-th row of X corresponds to the feature of node i). We denote by N (i) the106

neighbors of node i ∈ V and ∥ · ∥2 the Euclidean (resp., spectral) norm for vectors (resp., matrices).107

In this work, we consider the task of node classification. In this task, every node is assigned exactly108

one class from C = {1, 2, . . . , C} ⊂ Y and we consider dY as a distance within the output space Y .109

The learning objective is to find a function fW , parameterized by W , that assigns each node i ∈ V a110

class c ∈ C while minimizing some classification loss (e. g., cross-entropy loss), denoted as L.111

GNNs. A GNN model consists of a series of neighborhood aggregation layers that use the graph112

structure and the node features from the previous layers to generate new nodes representations.113

Specifically, GNNs update node feature vectors by aggregating local neighborhood information. In114

the particular case of GCNs, this process is described by the following iterative propagation:115

h(ℓ) = ϕ(ℓ)(Âh(ℓ−1)W (ℓ)), (1)

with W (ℓ) ∈ Rp×q being the weight matrix in the ℓ-th layer, q is the embedding dimension and ϕ(ℓ)116

is a non-linear activation function. Moreover, Â ∈ Rn×n denotes the normalized adjacency matrix117

Â = D−1/2AD−1/2 where D = diag(|N (1)|, |N (2)|, . . . , |N (n)|) denotes the degree matrix.118

Problem Setup. For our theoretical analysis, we assume that the model is based on 1-Lipschitz119

activation functions (which is a characteristic of commonly used activation functions such as TanH).120

Additionally, we consider the training loss function L to be L-smooth and that it is minimized using121

gradient descent. We denote by W∗ the local optimum towards which gradient descent iterates122

converge. Specifically, for a learning rate η < 1
L , the update at time step t for a layer i is:123

W
(i)
t+1 = W

(i)
t − η∇L(W (i)

t ).

It is worth emphasizing that although we focus on the node classification task, which is prevalent and124

well-studied in the literature of adversarial robustness, our analysis is equally applicable to other tasks125

such as graph classification. Moreover, while our theoretical analysis predominantly centers around126

using the gradient descent as the optimizer, this choice doesn’t limit the generality of our findings.127

One can employ a different optimizer and still yield the same insights and results by following a128

similar approach as the one outlined in this paper. Consequently, this specific setup should not be129

perceived as a limitation but rather as an analytical choice.130

3



3.2 Adversarial Robustness for Graph Neural Networks131

Let f : (A,X ) → Y be a GNN-classifier following the framework outlined in Section 3.1. An132

adversarial attacks consists of generating an alternative graph (Ã, X̃) that perturbs the original133

prediction f(A,X) while not being far (semantically) from the original graph. Typically, this134

generated graph must adhere to a number of constraints related to its similarity to the original graph,135

defined by a perturbation budget ϵ controlling the number of edited edges or features. The set of136

these graphs is written as B([A,X]; ϵ) = {(Ã, X̃) : minP∈Π(∥A−PÃPT ∥2+ ∥X −PX̃∥2) ≤ ϵ},137

where Π represents the set of permutations of the adjacency matrix. While the previous formulation138

relies on the ℓ2 norm, other norms may be used depending on the domain of application and the139

specific use case. Building on previous work [8], the adversarial risk of a GNN can be defined as the140

expected error of adjacent graphs within the considered graph’s neighborhood defined by ϵ written as:141

Rϵ[f ] = E
(A,X)∼D

[
sup

(Ã,X̃)∈B([A,X];ϵ)

dY(f(Ã, X̃), f(A,X))

]
. (2)

In the current analysis, we focus on the ℓ2 norm as our output distance dY (which can be substituted142

by any norm – giving the existence of norm’s equivalence). We theoretically approach the introduced143

adversarial risk by deriving an upper-bound, which reflects the model’s expected error under input144

perturbation. Intuitively, a smaller upper bound reflects a smaller adversarial risk which in turn145

suggests a robust behavior locally. In this perspective, Definition 1 draws the link between the146

considered risk quantity and a model’s robustness.147

Definition 1. (Adversarial Robustness). The graph-based function f : (A,X ) → Y is said to be148

(ϵ, γ)− robust if its adversarial risk is upper-bounded by γ, i. e., Rϵ[f ] ≤ γ.149

The current definition addresses adversarial risk from a worst-case scenario perspective, which is150

the most prevalent approach in the literature. This means we aim to identify the neighbor graph151

that maximizes the harm (i. e., causes the greatest deviation from the original prediction). By upper-152

bounding the risk associated with this "worst-case" graph, we inherently account for all other potential153

adversaries within the same neighborhood, as their risk will be less than or equal to that of the worst-154

case scenario. We note that the nuances between the “average” and “worst-case” approaches have155

been thoroughly examined and justified in previous research [24].156

4 On the Effect of Initialization157

We start by considering the Graph Convolutional Networks (GCNs) within the broader context of158

Message Passing Neural Networks for node classification. This study investigates how initialization159

and other hyper parameters impact the final model’s robustness. In this context, we aim to establish a160

connection between the introduced adversarial risk (Equation 2) and the initial weight distribution161

and its evolution during training. Specifically, we seek to demonstrate that different choices in the162

initialization distribution and other relevant parameters lead to varying levels of model robustness,163

offering new insights into the potential trade-offs between initialization strategies and robustness. In164

this sense, we derive an upper-bound (denoted as γ in Definition 1) on the stability of a GCN-based165

classifier when the input graph’s node features are subject to adversarial attacks.166

Theorem 2. Let f : (A,X ) → Y denote a graph-based function composed of T GCN layers, where167

the initial weight matrix of the i-th layer is denoted by W
(i)
0 . For adversarial attacks only targeting168

node features of the input graph, with a budget ϵ, we have (in respect to Definition 1):169

γ = ϵ

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥)(∑
u∈V

ŵu

)

with t being the number of training epochs and ŵu denoting the sum of normalized walks of length170

(T − 1) starting from node u.171

Theorem’s proof is provided in Section A of the Appendix. Theorem 2 provides a formal connection172

between the robustness of a GCN-based classifier and its initial weights, offering valuable insights173

into their effects. From a first perspective, the derived upper-bound depends on the initial weight’s174
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norm. Specifically, a lower norm corresponds to a smaller upper-bound, indicative of a more robust175

model. However, while setting all initial weights to zero theoretically yields the smallest upper-176

bound and consequently the optimum robustness, this direction can detrimentally affect the model’s177

performance on the learning task. Empirical evidence suggests that initializing weights to zero (or a178

constant) often leads to poor learning outcomes, as it constrains weight behavior during propagation,179

limiting subsequent back-propagation operations and resulting in convergence to unsatisfactory local180

minima (e. g., see page 301 in [13]). From a second perspective, it appears that a higher number181

of training epochs leads to the looseness of the upper-bound, resulting in increased adversarial182

vulnerability. This latter observation provides proofs and highlights on the existence of the usually183

discussed trade-off between clean and attacked accuracy. Achieving a balance between increasing the184

number of epochs to achieve satisfactory clean accuracy and limiting them to attain a robust model is185

hence essential. While theoretically challenging to identify this equilibrium point, our experimental186

results demonstrate its existence. We note that the dependence of γ on t can be sharpened by having187

(1 + ηL)t instead of 2t. With small η (which is the case usually in practice), (1 + ηL)t ≈ 1 + tηL188

resulting in a bound which depends linearly in t. The same remark applies for the remaining bounds189

derived in the paper. These insights, in the case of node-feature-based adversarial attacks, also extends190

to structural perturbations where Theorem 3 provides the exact bound for this case.191

Theorem 3. Let f : (A,X ) → Y denote a graph-based function composed of T GCN layers, where192

the initial weight matrix of the i-th layer is denoted by W
(i)
0 . Let f be the number of used training193

epochs. When f is subject to structural attacks, with a budget ϵ, we have (in respect to Definition 1):194

γ = ϵ

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥) ∥X∥

(
1 + T

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥))

The computed upper-bound suggests that the effect of initialization is more important in the case of195

structural perturbations. This emphasis is resulting from the distinct dynamics within the message196

passing mechanism, where the influence of the adjacency matrix and node features varies during each197

propagation step. Precisely, for structural perturbations, the effect of the attack is considered at each198

propagation step through the perturbed adjacency matrix (in the aggregation step). Moreover, the199

impact is also amplified by the affected residual layers from previous iterations, resulting in a more200

significant attack result. This is different in the case of node-feature based adversarial attacks, since201

the node features are only taken into account in the first propagation. Overall, the main takeaway202

of the provided analysis in Theorem 2 and 3 is that “approximately-free” robustness enhancements203

can be derived from choosing the right initial weight’s distribution and the right number of training204

epochs. We illustrate this specific point by analyzing the effect of the initial distributions choices on205

the model’s robustness. Specifically, we consider the case of the Gaussian distribution, where Lemma206

4 studies how the parameters of this distribution – namely, the mean and variance – exert an influence207

on the expected (in respect to the initial distribution) value of the adversarial risk.208

Lemma 4. Let f : (A,X ) → Y denote a graph-based function composed of T GCN layers for209

which the initial weight are drawn from the Gaussian distribution N (µ,Σ). When subject to node210

features based adversarial attacks, we have the following:211

EW0∼N (µ,Σ)[Rϵ[f ]] ≤ ϵ

T∏
i=1

(
2t
√

µ2 + tr(Σ) + 2t+1
∥∥∥W (i)

∗

∥∥∥)(∑
u∈V

ŵu

)

Proof is provided in Section C.Given that a tighter upper bound inherently results in a higher level of212

robustness, the results derived in Lemma 4 illustrate the clear effect of initialization in the case of the213

Gaussian distribution. The derived bound shows that increasing the distribution parameters, both the214

mean and variance values, leads to a decrease in the victim model’s underlying robustness. While one215

might intuitively aim to set these parameters as low as possible to achieve optimal robustness, doing216

so could potentially compromise the model’s performance on clean datasets. Therefore, as previously217

mentioned, striking the right balance between clean accuracy and adversarial robustness is crucial.218

Extending the results to the GIN. The same previously applied analysis for the GCN-based models219

can be extended to take into account GIN-based classifiers. We consider the same set of assumptions220

and the same problem setup considered during the previously studied GCN case. We additionally221

assume that the input node feature space to be bounded, i. e., ∥X∥≤ B. We note that this bound is a222

realistic assumption and that the value B can be easily computed for any real-world dataset.223
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Theorem 5. Let f : (A,X ) → Y denote a graph-based function composed of T GIN layers, where224

the initial weight matrix of the i-th layer is denoted by W
(i)
0 . For adversarial attacks only targeting225

node features of the input graph, with a budget ϵ, we have:226

γ =

T∏
l=1

(
2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥

)[
BT max

u∈V
deg(u) + ϵ

]
with t being the number of training epochs and deg(u) is the degree of node u.227

Proof of the theorem is provided in the appendix (Section D). Theorem 5 establishes an upper bound228

on the robustness of a GIN-based classifier against adversarial attacks targeting node features. We229

observe analogous insights, to the ones derived for a GCN-based classifier, regarding the influence of230

the initialization distribution and number of training epoch on the model’s underlying robustness.231

5 Generalization to Other Models232

While our primary research focus lies within the domain of graph representation learning, a sub-field233

of the broader landscape of Deep Learning models, the fundamental principles of our theoretical234

analysis hold applicability across various model architectures. Notably, and to our knowledge, the235

absence of a comparable study in current adversarial literature motivates our endeavor to bridge this236

gap. In this section, we aim to fill this void by presenting a comprehensive analytical framework that237

provide the connection between weight initialization and the robustness of neural networks.238

Let x ∈ Rn0 denote an input vector where n0 is the input dimension. Let W (l) ∈ Rnl−1,nl be the239

weight matrix and bl ∈ Rnl the bias of the lth layer with nl being its dimensionality. We focus on240

the general family of neural networks for which the computation during layer l, using an activation241

function ϕ(l), can be written as :242

h(l) = ϕ(l)(W (l)h(l−1) + b(l)).

We consider the same set of assumptions (stated in Section 3.1) as the one from previous section. We243

consider the ℓ2 norm as our input and output distances within the metric space Rn0 and we consider244

an input attack budget epsilon. The introduced adversarial risk in Equation 2 can be easily extended245

and tailored to the family of considered neural networks discussed in this section. Further clarification246

on this extension is provided in the Appendix (Section G.1). From this standpoint, by adapting the247

Definition 1, analogous effects of the weight initialization, provided in Theorem 6, can be observed.248

Theorem 6. Let f : X ⊆ Rin → Y ⊆ Rout be a T -layers neural network with W
(i)
0 denoting the249

initial weight matrix of the i-th layer. When subject to adversarial attacks, f is (ϵ, γ)− robust with:250

γ = ϵ

T∏
i=1

(
2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥

)
The proof of Theorem 6 can be found in Section E of the Appendix. Similar to previous findings,251

the upper bound relies on key elements of the initialization process, specifically the initial weight252

norm and the number of training epochs. These results validate and extend the established link253

between initialization and a model’s robustness in neural networks, highlighting the importance254

of selecting appropriate parameters. From the derived upper bound, which is also applicable to255

GCN and GIN cases, we observe that the number of training epochs exerts an effect on the bound.256

Specifically, while increasing the number of epochs can improve the model’s performance on a clean257

dataset, it simultaneously leads to a deterioration in the model’s adversarial robustness. Ideally,258

adversarial defense strategies aim to avoid this trade-off between clean and attacked accuracy, striving259

for robust models that do not compromise the initial performance. In this context, considering the260

strong-convexity of the loss function L, in addition to the previously made assumptions, we observe261

that the effect of the number of training epochs becomes less pronounced. Lemma 7 specifically262

provides the computed bound under these assumptions.263

Lemma 7. Let f : X ⊆ Rin → Y ⊆ Rout be a T -layers neural network trained with a µ-strongly264

convex and L-smooth loss function. Let W (i)
0 denote the initial weight matrix of the i-th layer. When265
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subject to adversarial attacks, with a budget ϵ, we have that f is (ϵ, γ)− robust with:266

γ = ϵ

T∏
i=1

(
(1− µ/L)t∥W (i)

0 ∥+2∥W (i)
∗ ∥

)
The proof of the Lemma is provided in Section F of the Appendix. Since µ ≤ L, increasing the267

number of training epochs results in the diminishing influence of the initialization weights. In this268

scenario, the bound depends solely on the final weights, a phenomenon previously explored in works269

such as Parseval networks [5] for neural networks and GCORN [1] for GNNs. This observation270

highlights the necessity of convexity in the loss function when training a neural network, as it plays a271

crucial role in enhancing the model’s robustness, beyond the traditional considerations of classical272

training optimization perspectives.273

6 Experimental Results274

This section aims to empirically validate our theoretical findings using real-world benchmark datasets.275

We start by laying out the used experimental, then we study the impact of various initialization276

strategies on a GCN’s robustness. Next, we analyze the influence of training epochs on adversarial277

robustness. Finally, we extend our experimentation to considered family of DNNs in Section 5.278

6.1 Experimental Setting279

Experimental Setup. Consistent with our theoretical analysis, this section focuses on the node280

classification task. We leverage the citation networks Cora and CiteSeer [26], with additional results281

on other datasets provided in the Appendix G. To mitigate the impact of randomness during training,282

each experiment was repeated 10 times, using the train/validation/test splits provided with the datasets.283

A 2-layers GCN classifier with identical hyperparameters and activation functions was employed284

across all the experiments. The models were trained using the cross-entropy loss function, and285

consistent values for the number of epochs and learning rate were maintained across all analysis.286

Further implementation details can be found in Appendix H and the code implementation to replicate287

our experiments is provided in the supplementary material.288

Adversarial Attacks. We consider two main gradient-based structural adversarial attacks: (i)289

‘Mettack’ (with the ‘Meta-Self’ training strategy) [40] that formulates the problem as a bi-level290

problem solved using meta-gradients (ii) and the Proximal Gradient Descent (PGD) [34] which291

consists of iteratively adding small crafted perturbations using the gradient of the classifier’s loss.292

We additionally provide results for the ‘Dice’ attack [40] in Appendix G. For our experiments, we293

considered perturbation rates ranging from 10% (i. e., 0.1E) to 40% (i. e., 0.4E).294

Evaluation Metrics. We report the experimental findings in terms of the ‘Attacked Accuracy’, which295

is the model’s test accuracy when subject to the attacks. Additionally, given that initialization have an296

impact on the model’s generalization and performance, solely reporting the attacked accuracy fails in297

some specific cases to provide a comprehensive perspective. Thus, we adopt for some experiments298

the “Success Rate” metric, also commonly employed in adversarial literature, which encompasses the299

number of successfully attacked nodes while taking into account the model’s initial clean accuracy.300

6.2 Effect Of Training Epochs301

The theoretical analysis presented in Section 4 established a connection between the number of302

training epochs and the model’s resultant robustness. The derived bound suggests that increasing303

the number of epochs results in the model becoming more vulnerable to adversarial attacks. The304

objective of this experimental section is to empirically validate this assertion using real-world datasets.305

To this end, at each training epoch, we assess the model’s performance on the test set, considering306

both its clean accuracy and its accuracy under adversarial attacks.307

Figure 1 illustrates the results of this analysis. The initial two subplots (a,b) displays the findings on308

the Cora dataset, while the subsequent (c,d) subplots presents results from the CiteSeer dataset. For309

each dataset, the first plot showcases the clean and attacked accuracy, while the second plot shows310

the Success Rate (the discrepancy between the clean and attacked accuracy for each budget). The311

7



0 100 200 300 400 500
# Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 A
cc

ur
ac

y

(a)

Cora - Effect of # Epochs

Clean
10.0
20.0
30.0

0 100 200 300 400 500
# Epochs

5

0

5

10

15

20

25

30

35

S
uc

ce
ss

 R
at

e

(b)

Cora - Effect of # Epochs

10.0
20.0
30.0

0 100 200 300 400 500
# Epochs

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

(c)

Citeseer - Effect of # Epochs

Clean
10.0
20.0
30.0

0 100 200 300 400 500
# Epochs

0

5

10

15

20

25

S
uc

ce
ss

 R
at

e

(d)

Citeseer - Effect of # Epochs

10.0
20.0
30.0

Figure 1: Effect of training epochs on the model’s robustness on Cora (a,b) and CiteSeer (c,d).
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Figure 2: Effect of the variance parameter on the model’s robustness in the case of Gaussian
Initialization using on PGD [on Cora (a) and Citeseer (b)] and Mettack [on Cora (a) and Citeseer (b)].

experimental results demonstrate the existence of the previously discussed trade-off between clean and312

robust accuracies. Specifically, as anticipated, the clean accuracy exhibits a continual increase until313

reaching a plateau, corresponding to the convergence of the loss function to a minimum. Conversely,314

the attacked accuracy demonstrates a rising trend until reaching an inflection point, beyond which it315

begins to decline. These findings confirms the observations from the derived upper-bound, indicating316

that a higher number of epochs leads to increased vulnerability in the model. Ideally, users would317

aim to stop training at the inflection point, where the attacked accuracy is maximized while the clean318

accuracy remains proximal to its convergence point.319

6.3 Effect Of Initial Weight Distribution320

We aim to validate the impact of the initial weight norms on the model’s adversarial robustness. As321

previously discussed in Section 4, a larger weight norm leads to the relaxation of the upper-bound,322

potentially resulting in the model being more susceptible to adversarial attacks.323

In this perspective, we start by investigating the effect of sampling from a Gaussian distribution, as324

outlined in Lemma 4. We hence consider this latter by setting the mean value µ to a constant, and325

analyzing the impact of the variance parameter σ. Intuitively, based on the upper-bound analysis, a326

higher variance value is anticipated to result in reduced model robustness. Figure 2 illustrates the327

resultant Success Rate across various variance values for both the "PGD" and "Mettack" methods,328

applied to the Cora and Citeseer datasets. The findings unequivocally validate the theoretical insights,329

demonstrating a direct correlation between increasing the variance (σ) and a higher Success Rates,330

indicating heightened vulnerability and reduced robustness of the model. Moreover, the impact of331

initialization becomes more pronounced when considering larger attack budgets, as outlined in the332

computed upper-bound. Notably, for certain budgets (e.g., 30% and 40%), the observed gap ranges333

between 5% and 15%, underscoring the initial weights significant implications on the robustness.334

Within the same context, we explore alternative initialization strategies, focusing on two primary335

cases. First, we investigate sampling initial weights from a uniform distribution U(−β, β), where336

β can be seen as a scaling parameter for weight norms. Second, we consider employing a scaled337

orthogonal weight initialization strategy. While this our aim can be approached by sampling weights338

from a scaled random Gaussian distribution, we adopt the orthogonal initialization strategy proposed339

in prior work [25], which we further rescale by a factor β to examine the impact on weight norms.340
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Figure 3: Effect of the scaling parameter β on the model’s robustness in the case of Uniform (a-d)
and Orthogonal (e-h) Initialization when subject to PGD and Mettack using Cora and CiteSeer.

In both cases, higher scaling parameter values of β are anticipated to theoretically yield higher341

upper-bounds and consequently render the model more vulnerable, as indicated by our computed342

bounds. We conduct numerical computations on both the Cora and Citeseer datasets to assess the343

resulting adversarial robustness of a GCN across various β values, as provided in Figure 3. The344

experimental results are exactly aligned with our theoretical findings showcasing the effect of the345

weight norm in the adversarial robustness. To summarize, while traditionally overlooked in prior346

studies on adversarial robustness, our experimentation underscores the critical importance of selecting347

appropriate initialization distributions and strategies for enhancing model robustness.348

6.4 Experimental Generalization349

Figure 4: Effect of initialization on the GIN (a) and DNN (b) for
different attack budgets.
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We extend our experimenta-350

tion to empirically validate351

the theoretical generalizations352

provided in both Section 4 for353

the GINs and Section 5 for a354

DNNs. To this end, we con-355

sider these two models with356

various initialization schemes,357

including the previously used358

Orthogonal [25] and Uniform359

initialization in addition to the360

Kaiming [16] and Xavier Ini-361

tialization [12]. Our analysis362

primarily focuses on the PGD363

adversarial attack, using iden-364

tical attack budgets as in the previous sections. Figure 4 presents the results on the GIN (a) using the365

Cora dataset and (b) on the DNN using the MNIST dataset. Notably, we observe that the different366

initialization methods yield similar clean accuracy (ϵ = 0), yet as the attack budget increases, the367

discrepancy in attacked accuracy between them also grows. For instance, in the case of DNNs, the368

accuracy gap between the best and worst initialization methods for ϵ = 0.1 ranges around 60%,369

proving our main assumption related to the impact of initialization on the model’s robustness.370
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7 Conclusion & Limitations371

The current study shows that the dynamics of learning in GNNs and DNNs have an important effect372

on the model’s final robustness. Specifically, we theoretically showed that the model’s robustness is373

connected to the weight initialization and the number of training epochs. We empirically validate374

our findings, where we can see that choosing the right initialization can yield huge "almost-free"375

robustness improvement. We additionally showed the existence of a trade-off between choosing the376

right number of epochs to have the best clean accuracy and the most robust model. While the current377

work didn’t propose an alternative or a solution, it has introduced a new perspective, which in our378

knowledge, was absent from the adversarial literature, opening the door to new research direction379

either by proposing new initialization scheme to improve robustness while guaranteeing a good380

generalization or new gradient-based weight updates to enforce the robustness of the model.381
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Supplementary Material: If You Want to Be Robust,
Be Wary of Initialization

A Proof Of Theorem 2495

Theorem. Let f : (A,X ) → Y denote a graph-based function composed of T GCN layers, where496

the initial weight matrix of the i-th layer is denoted by W
(i)
0 . For adversarial attacks only targeting497

node features of the input graph, with a budget ϵ, we have (in respect to Definition 1):498

γ = ϵ

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥)(∑
u∈V

ŵu

)

with t being the number of training epochs and ŵu denoting the sum of normalized walks of length499

(T − 1) starting from node u.500

Proof. Let’s consider a graph-function f that is based on T GCN-layers. The gradient descent update501

at epoch t for a layer i is written as:502

W
(i)
t+1 = W

(i)
t − η∇L(W (i)

t )

Since we consider that our loss function L to be L-smooth, we have the following result:503

∥∇L(W (i)
t )∥≤ L∥W (i)

t −W
(i)
∗ ∥

Consequently, after t training epochs, we can write:504

∥W (i)
t ∥ = ∥W (i)

t−1 − η∇L(W (i)
t−1)∥

≤ ∥W (i)
t−1∥+ηL∥W (i)

t−1 −W
(i)
∗ ∥

≤ (1 + ηL)∥W (i)
t−1∥+ηL∥W (i)

∗ ∥

In addition, we have that η ≤ 1
L . Hence, by recursion, we find that:505

∥W (i)
t ∥ ≤ (1 + ηL)t∥W (i)

0 ∥+
t∑

h=0

2h∥W (i)
∗ ∥ (3)

≤ (1 + ηL)t∥W (i)
0 ∥+2t+1∥W (i)

∗ ∥ (4)

Giving that we are considering feature-based adversarial attacks, let X denote the original node506

features and X ′ denote the perturbed adversarial features. With an attack budget ϵ, from the work [1],507

we have the following result:508

∀[A,X ′] ∈ B([A,X], ϵ), ∥f(A,X)− f(A,X ′)∥≤
T∏

i=1

∥W (i)
t ∥ϵ(

∑
u∈V

ŵu). (5)

with ŵu denoting the sum of normalized walks of length (T − 1) starting from node u. Consequently:509

sup
[A,X′]∈B([A,X],ϵ)

∥f(A,X)− f(A,X ′)∥≤
T∏

i=1

∥W (i)
t ∥ϵ(

∑
u∈V

ŵu). (6)
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From Result 3 and 6, we conclude that:510

sup
[A,X′]∈B([A,X],ϵ)

∥f(A,X)− f(A,X ′)∥≤ ϵ

T∏
i=1

[
2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥

]
(
∑
u∈V

ŵu)

We conclude that f is (ϵ;γ)-robust with:511

γ = ϵ

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥)(∑
u∈V

ŵu

)

512

B Proof Of Theorem 3513

Theorem. Let f : (A,X ) → Y denote a graph-based function composed of T GCN layers, where514

the initial weight matrix of the i-th layer is denoted by W
(i)
0 . Let f be the number of used training515

epochs. When f is subject to structural attacks, with a budget ϵ, we have (in respect to Definition 1):516

γ = ϵ

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥) ∥X∥

(
1 + T

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥))

Proof. Similar to the previous proof, let’s consider a graph-function f that is based on T GCN-layers517

and trained using gradient descent for t epochs. We have the following result from Equation 3:518

∥W (i)
t ∥≤ 2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥ (7)

For this proof, we are considering the model f to be subject to structural perturbations. In this519

perspective, let Ã denote the input non-attacked adjacency and Ã′ denote the attacked/perturbed520

adjacency, with h′ denoting its corresponding hidden representation. From the work [1], we have:521

∀[A′, X] ∈ B([A,X], ϵ), ∥f(Ã,X)− f(Ã′, X)∥≤
T∏

i=1

∥W (i)∥∥X∥ϵ(1 + T

T∏
i=1

∥W (i)∥)

By combining the two previous results, we get that following inequality and hence the desired result:522

sup
[A′,X]∈B([A,X],ϵ)

∥f(Ã,X)− f(Ã′, X)∥≤ϵ

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥) ∥X∥(
1 + T

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥)) .

523

C Proof Of Lemma 4524

Lemma. Let f : (A,X ) → Y denote a graph-based function composed of T GCN layers for which525

the initial weight are drawn from the Gaussian distribution N (µ,Σ). When subject to node features526

based adversarial attacks, we have the following:527

EW0∼N (µ,Σ)[Rϵ[f ]] ≤ ϵ

T∏
i=1

(
2t
√

µ2 + tr(Σ) + 2t+1
∥∥∥W (i)

∗

∥∥∥)(∑
u∈V

ŵu

)

Proof. Let’s consider f to be a graph classifier based on T -GCN layers for which the initial weight528

are drawn from the Gaussian distribution. Specifically, ∀i ≤ L,W
(i)
0 ∼ N (µ,Σ). We have that:529

E[∥W (i)
0 ∥] ≤

√
∥µ∥2+tr(Σ)
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From Theorem 2, we have the following:530

γ = ϵ

T∏
i=1

(
2t
∥∥∥W (i)

0

∥∥∥+ 2t+1
∥∥∥W (i)

∗

∥∥∥)(∑
u∈V

ŵu

)

Hence, combining the two elements results in the following:531

EW0∼N (µ,Σ)[Rϵ[f ]] ≤ ϵ

T∏
i=1

(
2t
√

µ2 + tr(Σ) + 2t+1
∥∥∥W (i)

∗

∥∥∥)(∑
u∈V

ŵu

)

532

D Proof Of Theorem 5533

Theorem. Let f : (A,X ) → Y denote a graph-based function composed of T GIN layers, where534

the initial weight matrix of the i-th layer is denoted by W
(i)
0 . For adversarial attacks only targeting535

node features of the input graph, with a budget ϵ, we have:536

γ =

T∏
l=1

(
2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥

)[
BT max

u∈V
deg(u) + ϵ

]
with t being the number of training epochs and deg(u) is the degree of node u.537

Proof. Let’s consider a graph-function f that is based on T GIN-layers and trained using gradient538

descent for t epochs. We have the following result from Equation 3:539

∥W (i)
t ∥ ≤ (1 + ηL)t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥≤ 2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥ (8)

Let X denote the original node features and X ′ the perturbed adversarial features. For an attack540

budget ϵ, from the work [1], we have the following:541

∀[A′, X] ∈ B([A,X], ϵ), ∥f(A,X)− f(A,X ′)∥≤
T∏
l=1

∥W (l)∥[B × T ×max
u∈V

deg(u) + ϵ] (9)

Consequently, we can merge the two inequalities resulting in the following:542

γ =

T∏
l=1

(
2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥

)[
B × T ×max

u∈V
deg(u) + ϵ

]

543

E Proof Of Theorem 6544

Theorem. Let f : X ⊆ Rin → Y ⊆ Rout be a T -layers neural network with W
(i)
0 denoting the545

initial weight matrix of the i-th layer. When subject to adversarial attacks, f is (ϵ, γ)− robust with:546

γ = ϵ

T∏
i=1

(
2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥

)
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Proof. Let f be a T -layers neural network. We additionally assume that its corresponding activation547

functions are 1-Lipschitz. Let x (with h its hidden representation) be an input vector and x′ (corresp.548

h′) its corresponding crafted adversarial input (corresp. hidden representation). For an adversarial549

attack with budget ϵ, we have the following:550

∀x′ ∈ X : ∥x− x′∥ ≤ ϵ, ∥f(x)− f(x′)∥ = ∥h(l) − h′(l)∥
= ∥ϕ(l)(W (l)h(l−1) + b(l))− ϕ(l)(W (l)h′(l−1) + b(l))∥
≤ ∥W (l)∥∥h(l−1) − h′(l−1)∥

Recurrently, we find the final result as:551

sup
x′∈X :∥x−x′∥≤ϵ

∥f(x)− f(x′)∥≤
T∏
l=1

∥W (l)∥ϵ (10)

Note that similar results and analysis have been provided in previous work [5, 2]. By using the result552

derived in Equation 3, we have:553

∥W (i)
t ∥≤ 2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥ (11)

By merging these two inequalities, and applying the Markov Inequality, we find the following554

upper-bound:555

γ = ϵ

T∏
i=1

(
2t∥W (i)

0 ∥+2t+1∥W (i)
∗ ∥

)
556

F On the case of strong-convexity - Proof of Lemma 7557

Lemma. Let f : X ⊆ Rin → Y ⊆ Rout be a T -layers neural network trained with a µ-strongly558

convex and L-smooth loss function. Let W (i)
0 denote the initial weight matrix of the i-th layer. When559

subject to adversarial attacks, with a budget ϵ, we have that f is (ϵ, γ)− robust with:560

γ = ϵ

T∏
i=1

(
(1− µ/L)t∥W (i)

0 ∥+2∥W (i)
∗ ∥

)
Proof. We consider f to be a T -layers neural network (following the same propagation as equation561

the one presented in Section 5). From Section E, we have the following:562

∥f(x)− f(x′)∥≤
T∏
l=1

∥W (l)∥ϵ

In addition to the previous assumption of L-smoothness of the loss function, we consider that its563

µ-strongly convex. Hence, for the layer (l), we have the following result:564

∥W (l)
t ∥ ≤ (1− µ/L)t∥W (l)

0 −W
(l)
∗ ∥+∥W (l)

∗ ∥ (12)

≤ (1− µ/L)t∥W (l)
0 ∥+2∥W (l)

∗ ∥ (13)

When subject to adversarial attacks, we can use the previous result from E, specifically from Equa-565

tion10:566

sup
x′∈X :∥x−x′∥≤ϵ

∥f(x)− f(x′)∥≤
T∏
l=1

∥W (l)∥ϵ (14)
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Hence, by merging the two previous results, we deduce that:567

γ = ϵ

T∏
i=1

(
(1− µ/L)t∥W (i)

0 ∥+2∥W (i)
∗ ∥

)
(15)

568
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Figure 5: Effect of the variance on the model’s robustness in the case of Gaussian Initialization when
subject to DICE (a,b) and Random Attacks (c,d) for both Cora and CiteSeer.

G Additional Results569

G.1 Adversarial Robustness of Deep Neural Networks570

We consider the general family of neural networks for which the computation during layer l, using an571

activation function ϕ(l), can be written as :572

h(l) = ϕ(l)(W (l)h(l−1) + b(l)).

with W (l) ∈ Rnl−1,nl being the weight matrix and bl ∈ Rnl the bias of the lth layer.573

In this perspective, let f : Rn0 → R be a neural network n0 being the input dimension. The574

adversarial task in this case consists of finding a perturbed input x̃ for which the prediction differs575

from the original prediction f(x). The perturbed input x̃ should hence adhere to the similarity576

constraints defined by a perturbation budget ϵ. Let’s consider the ℓ2 norm within both the input space577

Rn0 and the output space R, we can hence define the set of valid adversarial perturbation as:578

B(x; ϵ) = {x̃ : ∥x− x̃∥≤ ϵ}579

Similar to Section 3, we can introduce the adversarial risk of a DNN within the input’s neighborhood580

defined by the budget ϵ as the following:581

Rϵ[f ] = E
x∼D

x̃∈B(x;ϵ)

[∥(f(x̃)− f(x)∥]. (16)

From this adapted adversarial risk, we can introduce the notion of a DNN’s adversarial robustness582

Definition 8. (DNN - Adversarial Robustness). The neural network f : Rn0 → R is said to be583

(ϵ, γ)− robust if its adversarial risk is upper-bounded by γ, i. e., Rϵ[f ] ≤ γ.584
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G.2 Additional Adversarial Attacks585

In addition to the previously reported Mettack and PGD adversarial attack, we consider two additional586

adversarial attacks. Notably, we first consider "DICE” which involves iteratively perturbing a graph’s587

structure by adding or removing edges while ensuring connectivity, and then adjusting the perturbation588

based on the gradient of the graph neural network’s loss function to generate an adversarial example.589

The process aims to find a minimal perturbation that misleads the network’s predictions while keeping590

the perturbation size small. We additionally consider a "Random” attack which consists of randomly591

perturbing the adjacency matrix by dropping or adding edges. Figure 5 shows the adversarial accuracy592

results on the Cora and CiteSeer dataset when subject to DICE and Random attacks for different593

values of σ of the Gaussian initialization. Similarly, Figure 6 shows the effect of scaling both a594

uniform initialization and an Orthogonal one as previously explained in Section 6.595
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Figure 6: Effect of Uniform and Orthogonal Initialization on the model’s robustness in the case of
DICE Attack on Cora (a,c) and CiteSeer (b,d).
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Figure 7: Effect of the Gaussian (a; b; c), Orthogonal (d; e; f) and Uniform (g;h;i) Initialization on
the ACM dataset
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G.3 Additional Datasets596

We additionally extend the results to the ACM Dataset [30] within the node classification setting.597

Figure 7 presents the results using the Mettack, PGD and DICE for the ACM dataset for the Gaussian598

initialization (effect of σ), the Uniform and Orthogonal initialization.599
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Figure 8: Effect of the initial distribution on RGCN’s robustness and performance when subject to
structural adversarial attacks.

G.4 Additional Models600

As previously explained in Section 5, while our theoretical analysis primarily focuses on GCN,601

GIN, and DNN models, the derived insights extend to other models as well. To illustrate this point,602

we examine the effect of initialization distribution on the performance of defense methodologies.603

Specifically, we first consider RGCN [38], which employs Gaussian distributions in its hidden604

layers to mitigate the effects of adversarial attacks. We additionally consider GCN-Jaccard [31]605

which preprocesses the network by eliminating edges that connect nodes with jaccard similarity of606

features smaller than a certain level. We use various initialization schemes, similar to those in our607

previous experiments, and evaluate against the same adversarial attacks (PGD, Mettack, and DICE).608

Figure 8 (resp. Figure 9) presents the adversarial accuracy and defense performance of RGCN (resp.609

GCN-Jaccard) on the Cora, CiteSeer, and ACM datasets. Although the performance gap is not very610

pronounced for Cora, it is clearly observed for CiteSeer and ACM. This demonstrates the broader611

applicability of our insights across different models but also defense methods.612

H Datasets and Implementation details613

Datasets Characteristics and information about the node classification datasets used in our experi-614

mental study are presented in Table 1. As outlined in the main paper, we conduct experiments on a615

set of citation networks, including Cora, CiteSeer (in the main paper), and ACM dataset (Appendix616

G) [30]. For all these datasets, we adhere to the train/valid/test splits provided by with the dataset.617
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Figure 9: Effect of the initial distribution on GCN-Jaccard’s robustness and performance when subject
to structural adversarial attacks.

About the architectures. In all of the experiments, the models employed a 2-layer convolutional618

architecture (consisting of two iterations of message passing and updating) stacked with a Multi-Layer619

Perception (MLP) as a readout. The intent was to compare the models in an iso-architectural setting,620

to ensure a fair evaluation of their robustness. We maintained the same hyperparameters, including a621

learning rate of 1e-2, 300 epochs, and a hidden feature dimension of 16 have been. To account for the622

impact of random initialization, each experiment was repeated 10 times.623

Reproducibility of the experiments. We emphasize that all experiments should be easily repro-624

ducible by directly using the provided code. The archive contains a ReadMe file containing a small625

documentation on how to run the experiments.626

Table 1: Statistics of the node classification datasets used in our experiments.

DATASET #FEATURES #NODES #EDGES #CLASSES

CORA 1433 2708 5208 7
CITESEER 3703 3327 4552 6

On the adversarial attacks. For the PGD attack on the MNIST dataset, we used a step-size of627

0.1 and we set the number of iterations to 100 (which was observed to be enough for the attack628

convergence). Note that we set these parameters for all the considered initializations in Figure 4 as629

our aim is to compare the effect of the different distribution on the final robustness.630

Implementation details. Our implementation is available in the supplementary materials (and will631

be publicly available afterwards). It is built using the open-source library PyTorch Geometric (PyG)632

under the MIT license [11]. We used the publicly available implementation of the adversarial attacks633

provided in the DeepRobust package (https://github.com/DSE-MSU/DeepRobust). For RGCN, we634

used the implementation from the same package. The experiments have been run on both a NVIDIA635

A100 GPU where training a GCN takes around 1.2(±0.2) s.636
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NeurIPS Paper Checklist637

1. Claims638

Question: Do the main claims made in the abstract and introduction accurately reflect the639

paper’s contributions and scope?640

Answer: [Yes]641

Justification: In addition to stating the novelty of our proposed approach, we used our642

abstract and introduction to summarize our main findings and contributions related to the643

effect of initialization on the adversarial robustness (as theoretically justified and empirically644

tested in the following sections).645

Guidelines:646

• The answer NA means that the abstract and introduction do not include the claims647

made in the paper.648

• The abstract and/or introduction should clearly state the claims made, including the649

contributions made in the paper and important assumptions and limitations. A No or650

NA answer to this question will not be perceived well by the reviewers.651

• The claims made should match theoretical and experimental results, and reflect how652

much the results can be expected to generalize to other settings.653

• It is fine to include aspirational goals as motivation as long as it is clear that these goals654

are not attained by the paper.655

2. Limitations656

Question: Does the paper discuss the limitations of the work performed by the authors?657

Answer: [Yes]658

Justification: Together with our conclusion, we presented the set of limitations of work.659

Specifically, we stated that while our work is innovative, we didn’t provide a solution to660

the initialization problem from an adversarial defense perspective. We also discussed in661

the "problem setup” section our different theoretical choices (the smoothness of the loss662

function) and how realistic they are.663

Guidelines:664

• The answer NA means that the paper has no limitation while the answer No means that665

the paper has limitations, but those are not discussed in the paper.666

• The authors are encouraged to create a separate "Limitations" section in their paper.667

• The paper should point out any strong assumptions and how robust the results are to668

violations of these assumptions (e.g., independence assumptions, noiseless settings,669

model well-specification, asymptotic approximations only holding locally). The authors670

should reflect on how these assumptions might be violated in practice and what the671

implications would be.672

• The authors should reflect on the scope of the claims made, e.g., if the approach was673

only tested on a few datasets or with a few runs. In general, empirical results often674

depend on implicit assumptions, which should be articulated.675

• The authors should reflect on the factors that influence the performance of the approach.676

For example, a facial recognition algorithm may perform poorly when image resolution677

is low or images are taken in low lighting. Or a speech-to-text system might not be678

used reliably to provide closed captions for online lectures because it fails to handle679

technical jargon.680

• The authors should discuss the computational efficiency of the proposed algorithms681

and how they scale with dataset size.682

• If applicable, the authors should discuss possible limitations of their approach to683

address problems of privacy and fairness.684

• While the authors might fear that complete honesty about limitations might be used by685

reviewers as grounds for rejection, a worse outcome might be that reviewers discover686

limitations that aren’t acknowledged in the paper. The authors should use their best687

judgment and recognize that individual actions in favor of transparency play an impor-688

tant role in developing norms that preserve the integrity of the community. Reviewers689

will be specifically instructed to not penalize honesty concerning limitations.690
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3. Theory Assumptions and Proofs691

Question: For each theoretical result, does the paper provide the full set of assumptions and692

a complete (and correct) proof?693

Answer: [Yes]694

Justification: For each Theorem, Lemma and theoretical claim, we provide the proof in the695

Appendix and point out to the corresponding section in the main paper. We also stated all696

the assumptions and analytical choices in the Preliminaries (Section 3.1)697

Guidelines:698

• The answer NA means that the paper does not include theoretical results.699

• All the theorems, formulas, and proofs in the paper should be numbered and cross-700

referenced.701

• All assumptions should be clearly stated or referenced in the statement of any theorems.702

• The proofs can either appear in the main paper or the supplemental material, but if703

they appear in the supplemental material, the authors are encouraged to provide a short704

proof sketch to provide intuition.705

• Inversely, any informal proof provided in the core of the paper should be complemented706

by formal proofs provided in appendix or supplemental material.707

• Theorems and Lemmas that the proof relies upon should be properly referenced.708

4. Experimental Result Reproducibility709

Question: Does the paper fully disclose all the information needed to reproduce the main ex-710

perimental results of the paper to the extent that it affects the main claims and/or conclusions711

of the paper (regardless of whether the code and data are provided or not)?712

Answer: [Yes]713

Justification: In addition to providing the code as supplementary materials, we have provided714

all the implementations details that are sufficient to reproduce the results. These details715

include the used hyper-parameters (the architecture, learning rate . . . ) and also for the used716

adversarial attacks we provide the different parameters used. We also point out the dataset717

that we used (which are public) and that we used the same public folds as the one provided718

with the datasets.719

Guidelines:720

• The answer NA means that the paper does not include experiments.721

• If the paper includes experiments, a No answer to this question will not be perceived722

well by the reviewers: Making the paper reproducible is important, regardless of723

whether the code and data are provided or not.724

• If the contribution is a dataset and/or model, the authors should describe the steps taken725

to make their results reproducible or verifiable.726

• Depending on the contribution, reproducibility can be accomplished in various ways.727

For example, if the contribution is a novel architecture, describing the architecture fully728

might suffice, or if the contribution is a specific model and empirical evaluation, it may729

be necessary to either make it possible for others to replicate the model with the same730

dataset, or provide access to the model. In general. releasing code and data is often731

one good way to accomplish this, but reproducibility can also be provided via detailed732

instructions for how to replicate the results, access to a hosted model (e.g., in the case733

of a large language model), releasing of a model checkpoint, or other means that are734

appropriate to the research performed.735

• While NeurIPS does not require releasing code, the conference does require all submis-736

sions to provide some reasonable avenue for reproducibility, which may depend on the737

nature of the contribution. For example738

(a) If the contribution is primarily a new algorithm, the paper should make it clear how739

to reproduce that algorithm.740

(b) If the contribution is primarily a new model architecture, the paper should describe741

the architecture clearly and fully.742
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(c) If the contribution is a new model (e.g., a large language model), then there should743

either be a way to access this model for reproducing the results or a way to reproduce744

the model (e.g., with an open-source dataset or instructions for how to construct745

the dataset).746

(d) We recognize that reproducibility may be tricky in some cases, in which case747

authors are welcome to describe the particular way they provide for reproducibility.748

In the case of closed-source models, it may be that access to the model is limited in749

some way (e.g., to registered users), but it should be possible for other researchers750

to have some path to reproducing or verifying the results.751

5. Open access to data and code752

Question: Does the paper provide open access to the data and code, with sufficient instruc-753

tions to faithfully reproduce the main experimental results, as described in supplemental754

material?755

Answer: [Yes]756

Justification: We provide the anonymized code following the Neurips guidelines. Specifi-757

cally, we submitted the code with the supplementary material section and we clearly state758

the steps to run it using a ReadMe file. Please note that for this question, we consider "open759

source" as providing the code to the reviewers and making it public afterwards for the public.760

Guidelines:761

• The answer NA means that paper does not include experiments requiring code.762

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/763

public/guides/CodeSubmissionPolicy) for more details.764

• While we encourage the release of code and data, we understand that this might not be765

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not766

including code, unless this is central to the contribution (e.g., for a new open-source767

benchmark).768

• The instructions should contain the exact command and environment needed to run to769

reproduce the results. See the NeurIPS code and data submission guidelines (https:770

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.771

• The authors should provide instructions on data access and preparation, including how772

to access the raw data, preprocessed data, intermediate data, and generated data, etc.773

• The authors should provide scripts to reproduce all experimental results for the new774

proposed method and baselines. If only a subset of experiments are reproducible, they775

should state which ones are omitted from the script and why.776

• At submission time, to preserve anonymity, the authors should release anonymized777

versions (if applicable).778

• Providing as much information as possible in supplemental material (appended to the779

paper) is recommended, but including URLs to data and code is permitted.780

6. Experimental Setting/Details781

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-782

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the783

results?784

Answer: [Yes]785

Justification: We provided all the details about the architecture, the used hyper-parameters786

for the considered models (Section H of the Appendix) and all the hyper-parameters used787

for our adversarial attacks. Note that our work’s goal is to provide comprehensive overview788

of the effect of initialization on the robustness, hence making sure that the same choice of789

hyper-parameters is enough to ensure the fairness of the experiments.790

Guidelines:791

• The answer NA means that the paper does not include experiments.792

• The experimental setting should be presented in the core of the paper to a level of detail793

that is necessary to appreciate the results and make sense of them.794

• The full details can be provided either with the code, in appendix, or as supplemental795

material.796

11

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


7. Experiment Statistical Significance797

Question: Does the paper report error bars suitably and correctly defined or other appropriate798

information about the statistical significance of the experiments?799

Answer: [No]800

Justification: We reproduce each experiment 10 times to take into account the factor of801

randomization and we report the mean value. Note that since we use mainly figures (which802

are appropriate for our setting – given the different attack budgets we are using), this seemed803

as the perfect approach. For the train/test folds, we use the public folds provided with each804

dataset and hence reducing the effect of randomization.805

Guidelines:806

• The answer NA means that the paper does not include experiments.807

• The authors should answer "Yes" if the results are accompanied by error bars, confi-808

dence intervals, or statistical significance tests, at least for the experiments that support809

the main claims of the paper.810

• The factors of variability that the error bars are capturing should be clearly stated (for811

example, train/test split, initialization, random drawing of some parameter, or overall812

run with given experimental conditions).813

• The method for calculating the error bars should be explained (closed form formula,814

call to a library function, bootstrap, etc.)815

• The assumptions made should be given (e.g., Normally distributed errors).816

• It should be clear whether the error bar is the standard deviation or the standard error817

of the mean.818

• It is OK to report 1-sigma error bars, but one should state it. The authors should819

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis820

of Normality of errors is not verified.821

• For asymmetric distributions, the authors should be careful not to show in tables or822

figures symmetric error bars that would yield results that are out of range (e.g. negative823

error rates).824

• If error bars are reported in tables or plots, The authors should explain in the text how825

they were calculated and reference the corresponding figures or tables in the text.826

8. Experiments Compute Resources827

Question: For each experiment, does the paper provide sufficient information on the com-828

puter resources (type of compute workers, memory, time of execution) needed to reproduce829

the experiments?830

Answer: [Yes]831

Justification: We reported the details of implementation in Section H of the Appendix, where832

we specified the GPU that was used and the average time to do the experiments. Note that833

while we have chosen to use a GPU, our experiments can be easily done using a CPU.834

Guidelines:835

• The answer NA means that the paper does not include experiments.836

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,837

or cloud provider, including relevant memory and storage.838

• The paper should provide the amount of compute required for each of the individual839

experimental runs as well as estimate the total compute.840

• The paper should disclose whether the full research project required more compute841

than the experiments reported in the paper (e.g., preliminary or failed experiments that842

didn’t make it into the paper).843

9. Code Of Ethics844

Question: Does the research conducted in the paper conform, in every respect, with the845

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?846

Answer: [Yes]847

Justification: We follow the guidelines of the Neurips Code of Ethics.848
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Guidelines:849

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.850

• If the authors answer No, they should explain the special circumstances that require a851

deviation from the Code of Ethics.852

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-853

eration due to laws or regulations in their jurisdiction).854

10. Broader Impacts855

Question: Does the paper discuss both potential positive societal impacts and negative856

societal impacts of the work performed?857

Answer: [Yes]858

Justification: We provided overview on the harm that adversarial attacks can have on the859

applications of Deep Learning models. The main goal of our paper is to identify new860

potential factors related to adversarial attacks and hence should rather have a positive impact861

on the society.862

Guidelines:863

• The answer NA means that there is no societal impact of the work performed.864

• If the authors answer NA or No, they should explain why their work has no societal865

impact or why the paper does not address societal impact.866

• Examples of negative societal impacts include potential malicious or unintended uses867

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations868

(e.g., deployment of technologies that could make decisions that unfairly impact specific869

groups), privacy considerations, and security considerations.870

• The conference expects that many papers will be foundational research and not tied871

to particular applications, let alone deployments. However, if there is a direct path to872

any negative applications, the authors should point it out. For example, it is legitimate873

to point out that an improvement in the quality of generative models could be used to874

generate deepfakes for disinformation. On the other hand, it is not needed to point out875

that a generic algorithm for optimizing neural networks could enable people to train876

models that generate Deepfakes faster.877

• The authors should consider possible harms that could arise when the technology is878

being used as intended and functioning correctly, harms that could arise when the879

technology is being used as intended but gives incorrect results, and harms following880

from (intentional or unintentional) misuse of the technology.881

• If there are negative societal impacts, the authors could also discuss possible mitigation882

strategies (e.g., gated release of models, providing defenses in addition to attacks,883

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from884

feedback over time, improving the efficiency and accessibility of ML).885

11. Safeguards886

Question: Does the paper describe safeguards that have been put in place for responsible887

release of data or models that have a high risk for misuse (e.g., pretrained language models,888

image generators, or scraped datasets)?889

Answer: [NA]890

Justification: In this work, we study the theoretical effect of initialization on the adversarial891

robustness. We don’t provide any new pre-trained model nor new datasets.892

Guidelines:893

• The answer NA means that the paper poses no such risks.894

• Released models that have a high risk for misuse or dual-use should be released with895

necessary safeguards to allow for controlled use of the model, for example by requiring896

that users adhere to usage guidelines or restrictions to access the model or implementing897

safety filters.898

• Datasets that have been scraped from the Internet could pose safety risks. The authors899

should describe how they avoided releasing unsafe images.900
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• We recognize that providing effective safeguards is challenging, and many papers do901

not require this, but we encourage authors to take this into account and make a best902

faith effort.903

12. Licenses for existing assets904

Question: Are the creators or original owners of assets (e.g., code, data, models), used in905

the paper, properly credited and are the license and terms of use explicitly mentioned and906

properly respected?907

Answer: [Yes]908

Justification: We made sure to cite the papers that are relevant to our work and that were used909

to justify some theoretical or empirical insights. For the different code implementations, we910

cited clearly the license and the owner of the used function/code.911

Guidelines:912

• The answer NA means that the paper does not use existing assets.913

• The authors should cite the original paper that produced the code package or dataset.914

• The authors should state which version of the asset is used and, if possible, include a915

URL.916

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.917

• For scraped data from a particular source (e.g., website), the copyright and terms of918

service of that source should be provided.919

• If assets are released, the license, copyright information, and terms of use in the920

package should be provided. For popular datasets, paperswithcode.com/datasets921

has curated licenses for some datasets. Their licensing guide can help determine the922

license of a dataset.923

• For existing datasets that are re-packaged, both the original license and the license of924

the derived asset (if it has changed) should be provided.925

• If this information is not available online, the authors are encouraged to reach out to926

the asset’s creators.927

13. New Assets928

Question: Are new assets introduced in the paper well documented and is the documentation929

provided alongside the assets?930

Answer: [Yes]931

Justification: We have provided the implementation code together with all the experimental932

details to reproduce our work. We also clearly justify the use of the packages and their license.933

Note that the code have been anonymized and provided as a supplementary materials.934

Guidelines:935

• The answer NA means that the paper does not release new assets.936

• Researchers should communicate the details of the dataset/code/model as part of their937

submissions via structured templates. This includes details about training, license,938

limitations, etc.939

• The paper should discuss whether and how consent was obtained from people whose940

asset is used.941

• At submission time, remember to anonymize your assets (if applicable). You can either942

create an anonymized URL or include an anonymized zip file.943

14. Crowdsourcing and Research with Human Subjects944

Question: For crowdsourcing experiments and research with human subjects, does the paper945

include the full text of instructions given to participants and screenshots, if applicable, as946

well as details about compensation (if any)?947

Answer: [NA]948

Justification: There is no crowdsourcing nor research with human subjects in our case.949

Guidelines:950

• The answer NA means that the paper does not involve crowdsourcing nor research with951

human subjects.952
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• Including this information in the supplemental material is fine, but if the main contribu-953

tion of the paper involves human subjects, then as much detail as possible should be954

included in the main paper.955

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,956

or other labor should be paid at least the minimum wage in the country of the data957

collector.958

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human959

Subjects960

Question: Does the paper describe potential risks incurred by study participants, whether961

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)962

approvals (or an equivalent approval/review based on the requirements of your country or963

institution) were obtained?964

Answer: [NA]965

Justification: There is no crowdsourcing nor research with human subjects in our case.966

Guidelines:967

• The answer NA means that the paper does not involve crowdsourcing nor research with968

human subjects.969

• Depending on the country in which research is conducted, IRB approval (or equivalent)970

may be required for any human subjects research. If you obtained IRB approval, you971

should clearly state this in the paper.972

• We recognize that the procedures for this may vary significantly between institutions973

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the974

guidelines for their institution.975

• For initial submissions, do not include any information that would break anonymity (if976

applicable), such as the institution conducting the review.977
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