
UnboundAttack : Generating Unbounded
Adversarial Attacks to Graph Neural Networks

Sofiane Ennadir1, Amr Alkhatib1 Giannis Nikolentzos2, Michalis
Vazirgiannis1,2, and Henrik Boström1

1 EECS, KTH Royal Institute of Technology, Sweden
2 LIX, Ecole Polytechnique, Paris

Abstract. Graph Neural Networks (GNNs) have demonstrated state-of-
the-art performance in various graph representation learning tasks. Re-
cently, studies revealed their vulnerability to adversarial attacks. While
the available attack strategies are based on applying perturbations on
existing graphs within a specific budget, proposed defense mechanisms
successfully guard against this type of attack. This paper proposes a
new perspective founded on unrestricted adversarial examples. We pro-
pose to produce adversarial attacks by generating completely new data
points instead of perturbing existing ones. We introduce a framework,
so-called UnboundAttack, leveraging the advancements in graph genera-
tion to produce graphs preserving the semantics of the available training
data while misleading the targeted classifier. Importantly, our method
does not assume any knowledge about the underlying architecture. Fi-
nally, we validate the effectiveness of our proposed method in a realistic
setting related to molecular graphs.

Keywords: Adversarial Attacks, Graph Neural Networks

1 Introduction

In recent years, Graph Neural Networks (GNNs) emerged as an effective ap-
proach to learning powerful graph representations. These neural network-based
models, for instance Graph Convolution Networks (GCNs) [12], have shown to be
highly effective in a number of graph-based applications such as drug design [11].
However, recent literature has shown that these architectures can be attacked
by injecting small perturbations into the input [2, 28]. These attacks, referred to
as adversarial attacks in the literature, are highly critical, and this vulnerability
has raised tremendous concerns about applying them in safety-critical applica-
tions such as financial and healthcare applications. For example, a malicious user
could exploit this limitations by adding some inaccurate information to social
networks. As a result, several studies focus on developing methods to mitigate
the possible perturbation effects in parallel to these attacks. The proposed meth-
ods include adversarial training [6], enhancing the robustness of an input GNN
through edge pruning [25], and recently proposing robustness certificates [16].

The currently available attacks are mainly based to applying small perturba-
tions on either the structure or the node features of the graph [26, 23]. Given that

2 Ennadir et al.

most of the proposed defense strategies enhance the robustness of the classifiers
to small perturbations [10], they have shown some success in detecting these
attacks and in limiting their effect. Moreover, most existing approaches formu-
late the problem of generating adversarial attacks as a search or constrained
optimization problem. While the available constrained optimization tools are
easily applicable in continuous input domains (i. e., images), adapting them to
discrete domains such as graphs represents a significant challenge. Furthermore,
in contrast to images, changing the graph structure by adding/deleting an edge
may be infeasible and easily detectable in many settings. For instance, given a
molecular graph where the edges represent chemical bonds, by deleting/adding
an edge, the emerging graph may not represent a realistic molecule anymore.

To tackle the aforementioned limitations, in this paper, we introduce Un-
boundAttack, a more general and realistic attack mechanism which creates new
adversarial examples from scratch instead of just applying perturbations to an
input graph. The approach capitalizes on recent advancements in the field of
Generative Adversarial Networks (GANs) to generate a set of legitimate graphs
that share similar properties with the input graphs. These properties include
degree distribution, diameter and subgraph structures among others. This ap-
proach of producing artificially generated graphs that do not emerge directly
from input samples and which can mislead a targeted victim model is known as
unbounded adversarial attacks. The term “unbounded” in this setting refers to
the idea that these attacks are not directly linked to a specific existing graph
but rather to a more general view of the dataset to be attacked. We validate in
an experimental setting that these attacks can actually mislead the victim clas-
sifier but not some oracle function, thus presenting a major threat for real-world
applications. The proposed framework is general and can operate on top of any
GNN. Our main contributions are summarized as follows:

– We propose UnboundAttack, a generative framework for crafting from scratch
adversarial attacks to pretrained GNNs. The proposed framework assumes
no knowledge about the underlying architecture of the attacked model and
may be applied to an ensemble of available models.

– We designed a realistic experimental setting using molecular data in which
our model is evaluated and we show its effectiveness and ability to generate
realistic and relevant attacks.

2 Related Work

Given the discrete nature of graphs, applying attack methods from other domains
is very challenging. Similarly to the image domain attacks, most available meth-
ods formulate the task as a search problem. The objective of the task is to find
the closest adversarial perturbation to a given input data point. This approach
has led to several proposed attack strategies. For example, Nettack [26] intro-
duced a targeted attack on both the graph structure and nodes features based
on a greedy optimization algorithm of an attack loss to a surrogate model. In ad-
dition, [27] formulate the problem as a bi-level optimization task and leverages

UnboundAttack - Unbounded Adversarial Attacks to GNNs 3

meta-gradients to solve it. [23] expanded this work by proposing a black-box
gradient attack algorithm to overcome several limitations of the original work.
From another perspective, [3] propose to use Reinforcement Learning to solve
the search problem and hence generate adversarial attacks. In the same context,
the work [18] proposed to inject fake nodes into the graph and leveraged Re-
inforcement Learning to manipulate the labels and links of the injected nodes
without changing the connectivity and other metrics between existing node.
While the majority of the work is focusing on node classification, very few meth-
ods were proposed for the graph classification task. For instance, [19] proposed a
new optimization-based approach to tackle the adversarial attack in a black-box
setting. Moreover, [14] formulated the adversarial attack problem as an optimiza-
tion problem and proposed an efficient solution based on a searching algorithm
and query-efficient gradient. Finally, [24] designed an attack strategy based on
learning a scoring function to rank nodes based on the attacker’s expectation.

Formulating adversarial attacks as an optimal search problem has important
limitations. For example, the search/optimization process should be performed
for each attack input, which generally leads to a limited set of non-diverse pertur-
bations. The attacks are therefore easily detectable by defense mechanisms such
edge pruning [25]. In this perspective, unconstrained optimization approaches
have lately been proposed to tackle these limitations. While the unconstrained
approach has been investigated in other domains, such as images, to our knowl-
edge, it has not been studied for graphs. For instance, [17] proposed synthesizing
unrestricted adversarial images entirely from scratch using a conditional genera-
tive model and [1] proposed to semantically manipulate images to attack models.

3 Preliminaries

Before continuing with our contribution, we begin by introducing the graph
classification problem and some key notation.

3.1 Graph Neural Networks

Let G = (V,E) be a graph where V is its set of vertices and E its set of edges.
We will denote by n = |V | and m = |E| the number of vertices and number of
edges, respectively. Let N (v) denote the set of neighbors of a node v ∈ V , i. e.,
N (v) = {u : (v, u) ∈ E}. The degree of a node is equal to its number of neighbors,
i. e., equal to |N (v)| for a node v ∈ V . A graph is commonly represented by its
adjacency matrix A ∈ Rn×n where the (i, j)-th element of this matrix is equal
to the weight of the edge between the i-th and j-th node of the graph and a
weight of 0 in case the edge does not exist. In some settings, the nodes of a
graph might be annotated with feature vectors. We use X ∈ Rn×K to denote
the node features where K is the feature dimensionality.
A GNN model consists of a series of neighborhood aggregation layers which
use the graph structure and the nodes’ feature vectors from the previous layer
to generate new representations for the nodes. Specifically, GNNs update nodes’

4 Ennadir et al.

feature vectors by aggregating local neighborhood information. Suppose we have

a GNN model that contains T neighborhood aggregation layers. Let also h
(0)
v

denote the initial feature vector of node v, i. e., the row of matrix X that corre-

sponds to node v. At each iteration (t > 0), the hidden state h
(t)
v of a node v is

updated as follows:

a(t)v = AGGREGATE(t)
({

h(t−1)
u : u ∈ N (v)

})
;h(t)

v = COMBINE(t)
(
h(t−1)
v ,a(t)v

)
(1)

where AGGREGATE is a permutation invariant function that maps the feature
vectors of the neighbors of a node v to an aggregated vector. This aggregated

vector is passed along with the previous representation of v (i. e., h
(t−1)
v) to the

COMBINE function which combines those two vectors and produces the new
representation of v. After T iterations of neighborhood aggregation, to produce
a graph-level representation, GNNs apply a permutation invariant readout func-
tion, e. g., the sum or mean operator, to nodes feature vectors as follows:

hG = READOUT
({

h(T)
v : v ∈ V

})
(2)

3.2 Adversarial attacks

Given a classifier f , an input data point G ∈ G and its corresponding label y ∈ Y
where f(G) = y, the goal of an adversarial attack is to produce a perturbed
graph G̃ slightly different from the original graph with its predicted class being
different from the predicted class of G. This could be formulated as finding a G̃
with f(G̃) = ỹ ̸= y subject to d(G, G̃) < ϵ with d being some distance function
between the original and perturbed graphs. For instance, d can be a matrix norm
of the difference of the aligned adjacency matrices || A− Ã || (e. g., l∞, l2).

4 Proposed Method: UnboundAttack

4.1 Unbounded adversarial attacks

We begin by formally defining what in what follows will be referred to as un-
bounded adversarial attacks. Given the set of graphs under consideration G, let
o : O ⊂ G → {1, 2, ..,K} be the oracle from which the true labels of the graphs Y
have been extracted. For instance, this oracle may be a human expert that uses
domain knowledge to determine the category/class of a graph. As previously
mentioned, a classifier denoted as f : G → Y = {1, 2, .., Y } (e. g., a GNN in
our setting) is trained by minimizing a loss function (e. g., cross-entropy loss) in
order to approach and estimate this oracle function. The model f is an estimator
of the oracle o and therefore we assume that f ̸= o. Given a graph G ∈ G, an
adversarial attack consists of finding a graph G̃ = (Ṽ , Ẽ) slightly different from
the original graph with its predicted class being different from the predicted
class of G. In practice, the main objective is to generate a graph G̃ that shares

UnboundAttack - Unbounded Adversarial Attacks to GNNs 5

Fig. 1. Illustration of the proposed framework UnboundAttack for generating un-
bounded adversarial attacks. The framework consists of three main components : (1) A
targeted GNN model; (2) A generator consisting of two MLPs taking a sampled vector
as input. (3) A classifier distinguishing between generated and real graphs.

similar properties with the graphs of the training set (e. g., similar degree distri-
bution, same motifs, etc.) as the graphs in the training set, and which can fool
the classifier but not the oracle. We next define unbounded adversarial attacks.

Definition. (Unbounded adversarial attacks) Given a small constant ϵ > 0
and a graph comparison metric d, we define an unbounded adversarial example
as a generated graph G̃ such as f(G̃) ̸= o(G̃) and ∀G ∈ G, d(G, G̃) < ϵ.

Notice that this definition can be seen as a generalization of the previous work
on perturbation-based approaches since the generated graph needs to be similar
to all graphs of the dataset. Note that d can be any function that measures
distance of graphs, such as norm of the difference of their aligned adjacency
matrices minP∈Π || A−PÃP⊤ || where Π is the set of permutation matrices.

4.2 Architecture overview

As discussed, we seek to generate a graph with same characteristics as the graphs
in the training set, for which the model’s prediction differs from the class pro-
vided by the oracle. Our objective can be divided into two parts. The first part
concerns generating realistic graphs with the same proprieties and semantics as
our training set while the second part ensures reaching our adversarial aim.

Recurrent neural networks (RNNs) [22] or other likelihood-based generative
models such as variational auto-encoders (VAEs) [13] may be suitable candi-
dates to tackle this task. However, in practice, we choose to use a likelihood-
free implicit generative approach; the generative adversarial network (GAN) [7],
with a similar approach to prior work of [5]. We highlight that the primary
contribution of our work is to provide a new adversarial perspective based on
unbounded attacks. Consequently, while we have based our architecture on the
GAN framework, other generative approaches could be used according to the
targeted downstream task. The flow of our adversarial framework is summarized
in Figure 1, we describe the different components in more details in what follows:

(1) Classifier. The victim classifier f : G → [0, 1]Y is an instance of a GNN
model following the general framework presented in subsection 3.1. We treat

6 Ennadir et al.

the model as a gray-box. Thus, the model is supposed to be trained and fixed,
and no assumptions are made about its internal architecture during the attack
phase. Depending on the attack strategy, the attacker can chose to operate our
framework as a white-box setting by directly using the victim classifier or as a
gray-box setting by training a surrogate model.

(2) Generator. The generator gθ learns to map a sampled D-dimensional
vector from a normal distribution z ∼ N (0, I) into an adjacency matrix Ã and a
feature matrix X̃ representing a graph G̃. Given a previously chosen fixed graph
size, we use two multi-layer perceptrons to process the input sampled vector.
The output from each MLP is post-processed using a discretization strategy.

(3) Discriminator. The discriminator dϕ learns to distinguish between the
generated and the real graphs. The model receives a synthetic graph and has to
classify whether it is sampled from the true data distribution or generated by
the generator gθ. It should be noted that the discriminator needs to be invariant
to the ordering of the nodes, and thus we employ a GCN [12].

4.3 Training and loss function

Generation loss. The main objective of the training phase is to generate real-
istic graphs with the same semantics as those of the training set. The training
consists, therefore, of learning a relevant discriminator and generator. At each
training step, the discriminator enhances its ability to distinguish between real
graphs and generated ones, while the generator improves its capacity to gener-
ate graphs that mislead the discriminator. The process can be seen as a game
between two active players (generator/discriminator) and a third static player
(victim classifier) that should converge into an equilibrium. This equilibrium
game is regulated by the classical GAN min-max equation:

min
gθ

max
dϕ

Ex∼pdata(x)[log dϕ(x)] + Ez∼pz(z)[log(1− dϕ(gθ(z)))] (3)

To ensure stability during training, we employ the Wasserstein GAN + GP
(WGAN-GP) [8] that uses gradient norm penalty to achieve Lipschitz continuity.

Adversarial loss. Given our objective of generating unbounded adversarial
attacks, by choosing a target attack class c, our model is trained to generate
graphs that would be classified to the true class from the oracle (i. e., o(G̃)=c)
and to some other class from the classifier (i. e., f(G̃) ̸= c). This is mainly
reflected in the generator modeling the conditional data distribution P (· | y = c).
In practice, during training, the discriminator is only given the set of real graphs
whose training labels are equal to c, which is defined as: Gc = {Gi | Gi ∈ G, yi =
c}. Furthermore, the output of the generator is evaluated at each iteration by
querying the attacked classifier. We strengthen the adversarial ability of the
model by including an additional term in the loss function of the generator:

L(θ) = LWGAN + βLAdv (4)

UnboundAttack - Unbounded Adversarial Attacks to GNNs 7

where β ∈ [0, 1] is a trade-off parameter reflecting our desire to produce valid
graphs and mislead the classifier. The second term of the loss function leads the
output of the generator to be different from the target class. Specifically, LAdv

may be a reward function taking the generated graph as input and attributing
a value based on the prediction probability formulated as LAdv : G̃θ → R. For a
single generated graph, we apply the following penalization term:

LAdv(θ; z) = ReLU
(
0.5−max

i ̸=c
(f(gθ(z))i

)
(5)

where z refers to the i-th vector sampled from the normal distribution and
given to the generator. Additionally, the maxi ̸=c(f(gθ(z))i refers the maximum
component (different from the c-th one) of the predicted probabilities vector of
predicted probabilities. At each training step, we evaluate all the graphs pro-
duced by the generator given the sampled vectors from the normal distribution
N (0, I). By minimizing this quantity, we maximize the other classes’ (different
from c) probabilities, therefore reaching our adversarial target.

Attacks Generation. After several training epochs, we expect the min-max
game between the three players (i. e., generator, discriminator, and victim clas-
sifier) to converge to an equilibrium. Furthermore, we consider that by achieving
this equilibrium, the generator can produce realistic graphs that are both ad-
versarial and preserve the training set’s main properties. Therefore, we directly
leverage this trained generator during the testing phase to produce a set of ad-
versarial graphs without querying the victim classifier or the discriminator.

5 Experimental Evaluation

In this section, we investigate the ability of the UnboundAttack framework to
produce adversarial examples in a realistic experimental setting. We first describe
the experimental setup, and then report the results and provide examples of
generated graphs. More specifically, we address two main points: (Q1) Validity
of attacks and (Q2) Adversarial aspect of these attacks.

5.1 Experimental setting

While experimenting with classical adversarial mechanisms is straightforward,
evaluating our proposed approach is related to finding an accessible oracle ca-
pable of providing the labels of the generated graphs. In this experiment, we
focus on chemical compounds using metrics available in the open-source chemo-
informatics Python package RDKit. These metrics serve as our oracle from which
we can derive the labels. We used the QM9 dataset [15] containing small organic
molecules. Each of these available molecules is represented by an undirected
graph G where nodes represent atoms and two atoms are connected by an edge
if an atomic bond exists between them. Each node and edge in the graph is
annotated with an one-hot vector indicating the type of the atom and atomic
bond. We choose the following chemical-related metrics to be used as an oracle:

8 Ennadir et al.

Table 1. Classification accuracy (± standard deviation) of the victim models on the
Qm9 dataset on clean and attacked models. The lower the accuracy the better.

Attack strategy Metric 1 - LogP Metric 2 - SaS

GCN GIN GCN GIN

Clean 97.8 % ± 0.7 % 97.1 % ± 0.2 % 91.4 % ± 0.3 % 89.8 % ± 0.2 %
Random 67.3 % ± 5.7 % 64.7 % ± 4.7 % 62.3 % ± 6.3 % 65.8 % ± 4.2 %
Gradient-based (PGD) 53.2 % ± 1.6 % 54.8 % ± 3.2 % 47.6 % ± 1.7 % 53.1 % ± 1.9 %
GradArgmax 48.5 % ± 2.7 % 51.7 % ± 2.3 % 45.3 % ± 2.4 % 54.9 % ± 3.6 %
Projective Ranking 47.8 % ± 2.3 % 58.3% ± 1.4 % 49.0 % ± 3.1 % 54.7 % ± 1.0 %

UnboundAttack 45.9 % ± 2.1 % 47.3 % ± 2.9 % 27.1 % ± 5.4 % 31.2 % ± 4.3 %

Attack strategy Metric 3 - Density Metric 4 - Weight

GCN GIN GCN GIN

Clean 83.9 % ± 0.5 % 80.2 % ± 0.9 % 97.5 % ± 0.2 % 95.6 % ± 0.1 %
Random 58.3 % ± 4.9 % 67.3 % ± 5.2 % 59.4 % ± 4.2 % 63.7 % ± 5.7 %
Gradient-based (PGD) 49.5 % ± 1.7 % 54.2 % ± 2.7 % 54.0 % ± 2.9 % 51.5 % ± 2.2 %
GradArgmax 46.7 % ± 3.2 % 52.9 % ± 4.6 % 52.5 % ± 6.1 % 53.7 % ± 1.4 %
Projective Ranking 47.8 % ± 2.5 % 55.2 % ± 2.4 % 45.0 % ± 3.3 % 58.8 % ± 1.3 %

UnboundAttack 43.2 % ± 8.3 % 49.7 % ± 7.1 % 30.3 % ± 6.8 % 40.7 % ± 9.8 %

– The logP or Octanol-water partition coefficient is the partition coefficient
representing the magnitude of the ratio of the concentration in Octanol.

– The Synthetic Accessibility score is a metric reflecting molecules’ ease of
synthesis (synthetic accessibility).

– The average molecular weight of the molecule and the molecule’s density

Using RDKit, a score for each of the available graphs is calculated for the
above metrics. By using a threshold (mean value), we convert each problem into
a binary classification task. We used two 3-layers Multilayer Perceptron (MLP)
models for the generator and a GCN as our discriminator. We arranged the
number of message passing layers and hidden dimensions to be different from
the victim model (especially in the GCN case) to assume no knowledge about the
underlying architecture of the victim classifier. For our experimental evaluation,
we used a discretization strategy based on the Gumbel-Softmax [9]. We demon-
strate the UnboundAttack framework on two popular GNNs: (1) GCN [12]; and
(2) GIN [21]. We used the sum operator as the readout function for both our
victim model and the discriminator to produce graph-level representations. Fur-
thermore, we used the cross-entropy loss with the Adam optimizer. We compare
the proposed approach to other available methods, which are mainly based on
constrained optimization, with respect to the accuracy of the attacker using
a separate test set. We performed each experiment 3 times in a 3-fold cross-
validation setting to estimate each attack’s generalization performance.

5.2 Performance analysis

We first compare the method against the model’s initial accuracy on test set
(clean) before the attack. We additionally compare the proposed method against

UnboundAttack - Unbounded Adversarial Attacks to GNNs 9

Table 2. Results from the MMD and other metrics (± standard deviation) of the
generated samples on the QM9 dataset for LogP metric.

Metric MMD Metric Other metrics

Deg. Clus. Novelty Uniqueness

Gradient-based (PGD) 0.06 ± 0.01 0.03 ± 0.01 74.6 ± 1.2 66.3 ± 0.9
GradArgmax 0.08 ± 0.02 0.05 ± 0.02 68.6 ± 0.8 62.4 ± 1.1
Projective ranking 0.11 ± 0.01 0.03 ± 0.01 83.5 ± 1.8 82.7 ± 2.3
UnboundedAttack 0.14 ± 0.02 0.05 ± 0.04 89.7 ± 0.4 88.4 ± 0.6

different adversarial attack methods. The first comparison is against a random
search method based on randomly adding/deleting edges. The second attack,
adapted from [20], is a white-box gradient-based method that either adds/deletes
edges by approaching the adversarial attack as an optimization method. The ap-
proach aims to find a set of perturbations that minimizes an attack loss given a
finite budget of edge perturbations. We consider a specific budget ∆ represent-
ing the maximum possible magnitude of the perturbations for both approaches
and we used the Proximal Gradient descent as an optimization tool. Since this
method is highly dependent on the chosen step-size ϵ, we tried different param-
eters and we reported the best result for each metric. We additionally compared
our method to GradArgmax [4] which is based on a gradient-greedy method to
select the optimal edge. After identifying the edges, removing or adding the edge
depends on the sign of the gradient. We finally evaluate our method against Pro-
jectiveRanking [24]. We note that the attack assumes access to the embedding
representations of all nodes from the targeted classifier. Similar to their imple-
mentation, we used a 2-layers MLP to serve as the scoring module. We should
mention that once the training phase of our method is completed, we can gener-
ate an unlimited number of adversarial attacks. In order to make the assessment
fair, we set the number of generated points to be similar to the cardinality of the
test set of other methods. Furthermore, we validate the quality of our generated
attacks using two key perspectives. The first perspective, related to evaluating
the quality of the generated graphs, is based on different graph metrics. We use
the Maximum Mean Discrepancy (MMD) measures, as presented in [22], using
the RBF kernel and for both the degree and clustering coefficient distributions.
The second perspective is related to the biochemical validity of the generated
samples and we used a Novelty and Uniqueness scores (similar to [5]) computed
through RDKit. The classification performance of the GCN and GIN target
models for all the metrics using different methods is reported in Table 1 and real
examples are provided in Figure 2.

The results demonstrate the effectiveness of the proposed UnboundAttack
strategy. The approach achieves the best attack performance on all datasets and
the difference in performance between the proposed approach and the other base-
lines is significant. In addition, the comparison metrics shows that our method
is capable of generating both valid and unique graphs. The obtained results thus
answer Q1 and demonstrate our generator’s ability to provide pertinent adver-

10 Ennadir et al.

Fig. 2. Examples of graphs from the QM9 dataset (left). Examples of generated attacks
(right). These examples have succeeded in misleading the classifier(i. e., o(G) ̸= f(G))

.

sarial attacks from scratch. While it may be argued that the computational cost
of our method is higher, we should note that the validity of the output in terms
of adversarial attacks is much more reliable. Moreover, in contrast with other
methods, such as gradient-based methods, where a specific process is performed
for each example, our training is only performed once. We would also like to
mention our proposed method’s ability to generate diverse valid adversarial at-
tacks. Finally, contrary to the perturbation-based methods, our approach is not
limited to the test set to be attacked but can generate a wide range of examples.

6 Conclusion

This work explores a new perspective on adversarial attacks on GNNs. Instead
of performing perturbations on a graph by adding/removing edges or editing
the nodes’ feature vectors, we propose to learn a new graph from scratch using
graph generative models. The produced graph has similar semantics to those of
the graphs of the training set, and hence may be an effective tool to mislead
a victim model. The proposed approach does not assume any knowledge about
the architecture of the targeted model. Experiments show that the method per-
forms better or comparable to other methods in degrading the performance of
the victim model. This work can be extended to other graph setting such as
node classification and edge classification. Furthermore, we anticipate that the
proposed architecture may support the development of new defense strategies
that could limit the potential negative impact of adversarial attacks, enhancing
the ability to deploy GNNs in real practical settings.

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

UnboundAttack - Unbounded Adversarial Attacks to GNNs 11

References

1. Bhattad, A., Chong, M.J., Liang, K., Li, B., Forsyth, D.A.: Unrestricted adversarial
examples via semantic manipulation (2019). DOI 10.48550/ARXIV.1904.06347.
URL https://arxiv.org/abs/1904.06347

2. Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., Song, L.: Adversarial
attack on graph structured data (2018). DOI 10.48550/ARXIV.1806.02371. URL
https://arxiv.org/abs/1806.02371

3. Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., Song, L.: Adversarial Attack
on Graph Structured Data. In: Proceedings of the 35th International Conference
on Machine Learning, pp. 1115–1124 (2018)

4. Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., Song, L.: Adversarial
attack on graph structured data (2018). DOI 10.48550/ARXIV.1806.02371. URL
https://arxiv.org/abs/1806.02371

5. De Cao, N., Kipf, T.: Molgan: An implicit generative model for small molecular
graphs (2018). DOI 10.48550/ARXIV.1805.11973. URL https://arxiv.org/abs/
1805.11973

6. Feng, F., He, X., Tang, J., Chua, T.S.: Graph adversarial training: Dynamically
regularizing based on graph structure (2019). DOI 10.48550/ARXIV.1902.08226.
URL https://arxiv.org/abs/1902.08226

7. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial networks (2014). DOI 10.
48550/ARXIV.1406.2661. URL https://arxiv.org/abs/1406.2661

8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved
training of wasserstein gans (2017). DOI 10.48550/ARXIV.1704.00028. URL https:
//arxiv.org/abs/1704.00028

9. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax
(2016). DOI 10.48550/ARXIV.1611.01144. URL https://arxiv.org/abs/1611.01144

10. Jin, W., Li, Y., Xu, H., Wang, Y., Ji, S., Aggarwal, C., Tang, J.: Adversarial
attacks and defenses on graphs: A review, a tool and empirical studies (2020).
DOI 10.48550/ARXIV.2003.00653. URL https://arxiv.org/abs/2003.00653

11. Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph
convolutions: moving beyond fingerprints. Journal of Computer-Aided Molecular
Design 30(8), 595–608 (2016)

12. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks (2016). DOI 10.48550/ARXIV.1609.02907. URL https://arxiv.org/abs/
1609.02907

13. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016). DOI 10.48550/
ARXIV.1611.07308. URL https://arxiv.org/abs/1611.07308

14. Mu, J., Wang, B., Li, Q., Sun, K., Xu, M., Liu, Z.: A hard label black-box adver-
sarial attack against graph neural networks (2021). DOI 10.48550/ARXIV.2108.
09513. URL https://arxiv.org/abs/2108.09513

15. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry
structures and properties of 134 kilo molecules. Sci Data 1, 140,022 (2014)

16. Schuchardt, J., Bojchevski, A., Gasteiger, J., Günnemann, S.: Collective robustness
certificates: Exploiting interdependence in graph neural networks. In: International
Conference on Learning Representations (2021). URL https://openreview.net/
forum?id=ULQdiUTHe3y

17. Song, Y., Shu, R., Kushman, N., Ermon, S.: Constructing unrestricted adversarial
examples with generative models (2018). DOI 10.48550/ARXIV.1805.07894. URL
https://arxiv.org/abs/1805.07894

12 Ennadir et al.

18. Sun, Y., Wang, S., Tang, X., Hsieh, T.Y., Honavar, V.: Adversarial attacks on
graph neural networks via node injections: A hierarchical reinforcement learning
approach. In: Proceedings of The Web Conference 2020, WWW ’20, p. 673–683.
Association for Computing Machinery, New York, NY, USA (2020). DOI 10.1145/
3366423.3380149. URL https://doi.org/10.1145/3366423.3380149

19. Wan, X., Kenlay, H., Ru, B., Blaas, A., Osborne, M.A., Dong, X.: Adversarial
attacks on graph classification via bayesian optimisation (2021). DOI 10.48550/
ARXIV.2111.02842. URL https://arxiv.org/abs/2111.02842

20. Xu, K., Chen, H., Liu, S., Chen, P.Y., Weng, T.W., Hong, M., Lin, X.: Topology
attack and defense for graph neural networks: An optimization perspective (2019).
DOI 10.48550/ARXIV.1906.04214. URL https://arxiv.org/abs/1906.04214

21. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How Powerful are Graph Neural Net-
works? In: 7th International Conference on Learning Representations (2019)

22. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: Graphrnn: Generating
realistic graphs with deep auto-regressive models (2018). DOI 10.48550/ARXIV.
1802.08773. URL https://arxiv.org/abs/1802.08773

23. Zhan, H., Pei, X.: Black-box Gradient Attack on Graph Neural Networks: Deeper
Insights in Graph-based Attack and Defense. arXiv preprint arXiv:2104.15061
(2021)

24. Zhang, H., Wu, B., Yang, X., Zhou, C., Wang, S., Yuan, X., Pan, S.: Projec-
tive ranking: A transferable evasion attack method on graph neural networks.
In: Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, CIKM ’21, p. 3617–3621. Association for Computing
Machinery, New York, NY, USA (2021). DOI 10.1145/3459637.3482161. URL
https://doi.org/10.1145/3459637.3482161

25. Zhang, X., Zitnik, M.: Gnnguard: Defending graph neural networks against adver-
sarial attacks (2020). DOI 10.48550/ARXIV.2006.08149. URL https://arxiv.org/
abs/2006.08149

26. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial Attacks on Neural Net-
works for Graph Data. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2847–2856 (2018)

27. Zügner, D., Günnemann, S.: Adversarial attacks on graph neural networks via meta
learning. In: 7th International Conference on Learning Representations (2019)

28. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural net-
works for graph data. In: Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM (2018)

